Environmental and Occupational Health Practice
Online ISSN : 2434-4931
Sampler design for determining the personal exposure level of workers to vapor and mist of benzyl alcohol
Hiromi AonoKumiko AraiMariko Ono-OgasawaraKenji YamamuroMasami ShimadaTakayuki OkadaToshihiro Kawamoto
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 2023-0022-OA

Details
Abstract

Objectives: This study aims to develop and validate a sampler to measure workers' exposure to the vapor and mist of benzyl alcohol. Methods: Recovery rate, extraction and desorption rates, breakthrough, and storage stability were tested using Slim-J connected to a glass fiber filter upstream (the connected sampler). The recovery rate of the connected sampler was compared with that of XAD-7. Benzyl alcohol on the filter was extracted, and that in Slim-J resin was desorbed by methanol with an internal standard (N,N-dimethylformamide). Benzyl alcohol was quantified through gas chromatography using a flame ionization detector (GC/FID). Air sampling was conducted by attaching the connected sampler to the chest of a worker during bridge paint film removal. Results: Calibration curves showed linearity with correlation coefficients >0.999. The lower limit of quantification was 0.54 mg/m3 of the airborne concentration at 5-mL desorption with 120-L air sampling. The recovery rates of the connected sampler were 101–103%, whereas those of XAD-7 were 72–78%. The average extraction efficiency from the filters was 105.3%, whereas those from Slim-J were 94.5%. No breakthrough was recognized by aeration at 1 L/min for 120 min. Benzyl alcohol in the sampler was stable for up to 7 days. The sampled air by the connected sampler during bridge paint film removal indicated an isolated peak by GC/FID. Conclusions: The connected sampler is reliable and suitable for measuring levels of personal exposure to benzyl alcohol in vapor and mist phases.

Content from these authors
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article
feedback
Top