Abstract
Magnetic analyses have been conducted in and around Akita-Yakeyama volcano at the northwestern edge of the Sengan Geothermal Area, northeast Japan to reveal the regional and local subsurface structures of the area. First, a magnetization intensity mapping method has been applied to analyze aeromagnetic anomalies of the area. Generally, magnetization highs and lows lie on volcanic rocks which are normally and reversely magnetized, respectively. Magnetization lows with small amplitudes are distributed on hydrothermally altered areas. These results imply the usefulness of the method to estimate the young volcanic activities of Quaternary volcanic areas. Detailed magnetic modeling reveals the subsurface structure of Akita-Yakeyama volcano itself. Rock magnetic data from volcanic rocks, both from the surface and cores in the geothermal exploration wells, have been employed for the modeling. The resultant magnetic structure indicates the following: the surface volcanic rocks are underlain by granitic intrusions which have minimum thicknesses of about 2, 000 m below the northern flank of volcano; in the southern flank, the surface volcanic rocks are underlain widely by the Old-Tamagawa Welded Tuffs which are reversely magnetized. These results show a good agreement with a geologic interpretation in and around the volcano, especially with a hypothesis of the existence of buried calderas below the present volcano.