Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Modeling of equivalent ionospheric currents from meridian magnetometer chain data
V. A. PopovV. O. PapitashviliJ. F. Watermann
Author information
JOURNAL FREE ACCESS

2001 Volume 53 Issue 2 Pages 129-137

Details
Abstract
In recent years, quantitative analysis of the magnetosphere-ionosphere coupling and electrodynamics of the polar ionosphere received much attention. Though remarkable progress has been made in this field by using a variety of magnetogram inversion techniques in order to infer the global ionospheric current distribution, there is still a need for modeling ionospheric currents locally, over a certain region, for comparison with other geophysical ground-based and satellite observations. This paper presents a simple method for estimating equivalent ionospheric currents using magnetic field observations along a meridian chain of ground-based vector magnetometers. The method can be applied in an automatic fashion to any available magnetometer chain data, for example, from the DMI Greenland west coast chain. We first describe how we separate contributions to the observed geomagnetic variations from external (ionospheric) and internal (induced) sources. We then model the ionospheric electrojet by a sequence of narrow current strips and apply the Biot-Savart law to formulate an inversion problem. Using a regularization technique, we find a stable distribution of the equivalent ionospheric currents crossing the magnetometer chain in eastward and westward direction. Simulation tests and a case study (20 March 1999) are discussed in order to illustrate properties of the solution to the inverse problem and to present a practical tool, which is accessible through the DMI World Wide Web site.
Content from these authors

This article cannot obtain the latest cited-by information.


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top