Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Analog experiments on magma-filled cracks
Competition between external stresses and internal pressure
Tohru WatanabeTakayuki MasuyamaKazuhiro NagaokaTsuyoshi Tahara
Author information
JOURNAL FREE ACCESS

2002 Volume 54 Issue 12 Pages 1247-1261

Details
Abstract
We have performed two series of analog experiments using gelatin to study the propagation of liquid-filled cracks in stressed medium. The first series was designed to study the competition between the external stress and the liquid excess pressure in controlling the propagation direction. We systematically controlled the external stress and the liquid excess pressure by changing the surface load and the liquid volume. An ascending crack progressively deflected to be perpendicular to the maximum tensile direction of the external stress. The degree of deflection depends on the ratio of the shear stress on a crack plane to the average liquid excess pressure. More deflection was observed for a crack with a larger ratio. No significant deflection was observed for the ratio less than 0.2. The volcanic activity in a compressional stress field might be understood in the context of this competition. The first series also demonstrated the importance of the gradient of the crack normal stress as a driving force for propagation. The vertical gradient of the gravitational stress generated by a mountain load can control the emplacement depth of magmas, and it might lead to the evolution of eruption style during the lifetime of a volcano. The second series was designed to study the three-dimensional interaction of two parallel buoyancy-driven cracks. The deflection of the second crack takes place, when the ratio of the shear stress generated by the first one to the average excess pressure of the second crack is larger than 0.2. If the second crack reaches the first one, the interaction can lead to the coalescence of two cracks. It has directivity: the region of coalescence extends more in the direction perpendicular to the first crack than in the direction parallel to it. It reflects the stress field around the first crack. This directivity might cause a characteristic spatial variation of magma chemistry through magma mixing.
Content from these authors

This article cannot obtain the latest cited-by information.


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top