Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
Long-term seismogenesis and self-organized criticality
Frank EvisonDavid Rhoades
Author information
JOURNAL FREE ACCESS

2004 Volume 56 Issue 8 Pages 749-760

Details
Abstract
The principles of self-organized criticality (SOC) provide a framework for understanding the process by which individual earthquakes are generated. The SOC principles of fractality, scaling, hierarchy, and extreme sensitivity to initial conditions, are exhibited by the precursory scale increase (Ψ) phenomenon, which we interpret as evidence of a long-term generation process. We have accordingly included SOC in a three-stage faulting model of seismogenesis. Fractality is represented by the Gutenberg-Richter relation, which is relied on for analysing the precursory scale increase (Ψ) phenomenon. Scaling characterizes the parameters of space, time and magnitude that relate the precursory seismicity to the mainshock and aftershocks. The validity of these relations is supported by application of the EEPAS model. Scaling also underlies the Mogi criteria, which are invoked to explain a selfgenerated transient effect, and hence the long duration of the seismogenic process. Hierarchy clarifies the otherwise complex situations that arise when two or more earthquakes are in process of generation at overlapping places and times. Extreme sensitivity to initial conditions explains why, with rare exceptions, both the seismogenic process and the culminating earthquake are initiated with no recognizable immediate trigger. The only exception so far observed for the seismogenic process is the proposed triggering, on 1992.06.28, of the long-term Hector Mine (California) process by the nearby Landers mainshock.
Content from these authors

This article cannot obtain the latest cited-by information.


この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top