Funkcialaj Ekvacioj
Print ISSN : 0532-8721
An Explicit Formula for the Discrete Power Function Associated with Circle Patterns of Schramm Type
Hisashi AndoMike HayKenji KajiwaraTetsu Masuda
Author information

2014 Volume 57 Issue 1 Pages 1-41


We present an explicit formula for the discrete power function introduced by Bobenko, which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation. The original definition of the discrete power function imposes strict conditions on the domain and the value of the exponent. However, we show that one can extend the value of the exponent to arbitrary complex numbers except even integers and the domain to a discrete analogue of the Riemann surface. Moreover, we show that the discrete power function is an immersion when the real part of the exponent is equal to one.

Information related to the author
© 2014 by the Division of Functional Equations, The Mathematical Society of Japan
Next article