2018 Volume 152 Issue 1 Pages 4-9
An increasing age is the greatest risk factor for dementia and related disorders. Therefore, much attention has been focus on researches to understand mechanisms of disease-related brain aging. Neurodegenerative diseases including Alzheimer’s disease (AD), dementia with lewy bodies, and frontotemporal lobar degeneration are mostly diagnosed by neuropathological features with protein inclusions such as Aβ, tau, α-synuclein, TDP-43, and FUS. These proteins are expected to lose physiological functions and mutual interaction with functional molecule with aging. Consecutively, acquired pathogenicities of aged proteins are accumulated and propagated in neural cells. The research for “Brain protein aging” is developed for understanding the mechanisms of initiation and pathogenicity of aging. Tau protein is one of major components of neurofibrillary tangles, which are closely associated with the severity of brain function loss of AD. To investigate tau protein’s Brain protein aging, we have currently developed the in vivo multimodal imaging techniques for visualizing the progression of tau pathology. In this review, we will introduce such a novel imaging-based diagnostic procedures on a mouse model of tauopathy.