2023 Volume 158 Issue 2 Pages 150-153
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as poor social communication and stereotyped/repetitive behaviors. Functional dynamics among multiple cortical areas are associated with processing sensory information and planning and executing behavioral expressions. However, the reconfiguration of large-scale functional network dynamics during behaviors remains to be elucidated in ASD. In this review, we describe our virtual reality (VR) based real-time imaging system which allowed us to investigate wide-field cortical activity in voluntarily behaving mice. We previously generated a mouse model of ASD with chromosome 15q11-13 duplication (15q dup), one of the most frequent genomic abnormalities, and reported that 15q dup mice display ASD-like behaviors. Using this system, we examined the functional cortical network during behaviors in 15q dup mice. Pair-wise correlation of cortical area activity on a time scale of a second was calculated to represent the dynamic state of cortical functional connectivity (FC). A graph theoretical network analysis was then conducted to illustrate rapid and robust behavior-state-dependent cortical network reconfiguration. Our VR-based real-time imaging system provides invaluable information to understand FC dynamics linked to a behavioral abnormality of neuropsychiatric disorders.