GEOCHEMICAL JOURNAL
Online ISSN : 1880-5973
Print ISSN : 0016-7002
ISSN-L : 0016-7002
Measurements, sources and sinks of photoformed reactive oxygen species in Japanese rivers
Taiwo Tolulope AyeniWaqar Azeem JadoonAdeniyi Olufemi AdesinaMichael Oluwatoyin SundayAdebanjo Jacob AnifowoseKazuhiko TakedaHiroshi Sakugawa
Author information
JOURNAL FREE ACCESS
Supplementary material

2021 Volume 55 Issue 2 Pages 89-102

Details
Abstract

Reactive oxygen species (ROS) are photochemically generated in sunlit natural water and are involved in degradation of organic matter, redox reactions, and biological processes. Hydroxyl radicals (·OH), nitric oxide radicals (NO·), and singlet oxygen (1O2) are some of the dominant ROS in natural water. In this study, these three ROS were measured in samples collected from nine rivers across 65 stations along the west to east axis of Japan. Quantification of ·OH, NO·, and 1O2 was performed by High-Performance Liquid Chromatography using benzene, 4, 5-diaminofluorescein-2, and furfuryl alcohol as chemical probes, respectively. The absorption coefficient at 300 nm (a300, m-1), which ranged from 2.44 to 36.2 m-1, was used to investigate the chromophoric dissolved organic matter (CDOM) properties of the rivers. The photoformation rate ranges were (13.9-944) × 10-12 M s-1 for ·OH, (2.76-2610) × 10-12 M s-1 for NO·, and (9.48-133) × 10-9 M s-1 for 1O2. The steady-state concentration ranges were (1.53-16) × 10-16 M for ·OH, (10.2-1520) × 10-12 M for NO·, and (3.79-53.4) × 10-14 M for 1O2. The results showed that nitrite was a major source for both ·OH and NO·, and CDOM was a major source for 1O2 across all the rivers. According to significant relationships with these sources, models were generated to predict the formation rates of the ROS (in M s-1) from known concentrations of source compounds using the equations R·OH (10-12) = 19.2 [NO2-1]-μM + 36.9, RNO· (10-12) = 41.4 [NO2-1]-μM + 44, and R1O2)(10-9) = 3.52 (a300)-m-1 + 1.61. Dissolved organic matter, escape to the atmosphere, and water molecules were the major sinks for river ·OH, NO·, and 1O2, respectively. A general scavenging rate constant of ·OH as a function of the dissolved organic carbon concentration was obtained [kC,OH = [(7.5 ± 6.8) × 108 L (mol C)-1 s-1]. These models will allow for easy prediction of ROS concentrations on a large-scale.

Content from these authors
© 2021 by The Geochemical Society of Japan
Previous article Next article
feedback
Top