GEOCHEMICAL JOURNAL
Online ISSN : 1880-5973
Print ISSN : 0016-7002
ISSN-L : 0016-7002
ARTICLE
U-Pb ages and REE compositions of zircon in megacrystic phengite-bearing quartz vein from the Lanterman Range, northern Victoria Land, Antarctica
Taehwan Kim Mi Jung Lee
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2023 Volume 57 Issue 1 Pages 1-12

Details
Abstract

Megacrystic phengite-bearing quartz veins associated with retrogressed eclogites occur along terrane boundary zone in the northern Ross orogen, Antarctica. The vein zircons crystallized from metamorphic fluid under high-pressure (P) conditions rather than captured as xenocrysts from the host eclogites, on the basis of: (1) weak oscillatory- and fir tree-zoned cathodoluminescence textures and extremely low Th/U ratios of zircon, (2) highly steep patterns of heavy rare earth elements and weak negative to positive Eu anomaly of zircons, suggesting their growth not in equilibrium with garnet and plagioclase, respectively; and (3) the high celadonite contents of phengite megacrysts (up to 3.33 a.p.f.u. Si for O = 11). Zircon U-Pb ages dated the high-P quartz vein formation at 501 ± 7 Ma (2σ), which overlaps with time of peak metamorphism of the eclogites at c. 500–498 Ma. The zircon crystallization age and marginal breakdown of phengite megacrysts into biotite–oligoclase symplectites suggest that the high-P quartz vein formation was at near-peak to early-exhumation stages of the eclogite facies metamorphism. The similarity in depths of the vein formation and major dehydration of subducting metamafic rocks further suggests that this fluid activity would be one of possible agents responsible for arc-related magmatism in northern Victoria Land of the Ross orogen.

Content from these authors
© 2023 by The Geochemical Society of Japan

Copyright © 2023 The Geochemical Society of Japan. This is an open access article distributed under the terms of the Creative Commons BY (Attribution) License (https://creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
https://creativecommons.org/licenses/by/4.0/legalcode
Next article
feedback
Top