2017 Volume 123 Issue 9 Pages 677-698
Recent petrological studies on the Sambagawa metamorphic belt in Shikoku have recognized that the coarse-grained eclogite-bearing lithologies (so-called ‘tectonic blocks’ in earlier studies) in the Besshi area exclusively preserve evidence for the ‘early’ Sambagawa metamorphism, which can be related to onset of the Sambagawa subduction system during Early Cretaceous (c.116Ma). Geological mapping and associated multidisciplinary studies on the regional (spatially widespread) Sambagawa metamorphism (both the eclogite-facies and main metamorphisms) have revealed the tectonic framework of the Late-Cretaceous Sambagawa subduction zone as follows: (i) a spreading ridge was approaching close to the trench; (ii) the subducting slab was coupled with the convective mantle at depth of >65 km; (iii) thickness of the hanging-wall continental crust was 30-35 km; and (iv) the forearc mantle wedge (30-65 km depth) was largely serpentinized. These features allow us to draw a semi-quantitative cross-section of the Sambagawa subduction zone at around 89-85Ma, implying that boundary conditions for thermo-mechanical modeling aiming to simulate exhumation of high-P/T metamorphic rocks are now well constrained. It has also become clear that ultramafic blocks dispersed in the higher-grade part of the Sambagawa belt were derived from the mantle wedge, i.e. the corresponding part of the belt has been re-evaluated as a ‘fossil subduction boundary’ of a relatively warm subduction zone. Field-based petrological studies in the Sambagawa belt can, therefore, have potential to provide invaluable information on material behaviors at the slab-mantle wedge interface including domains of episodic tremor and slip (ETS) in present-day warm subduction zones.