Annual Meeting of the Geological Society of Japan
Online ISSN : 2187-6665
Print ISSN : 1348-3935
ISSN-L : 1348-3935
The 130th Annual Meeting(2023kyoto)
Session ID : T6-P-21
Conference information

T6. Latest Studies in Sedimentary Geology
(entry) A hot, hydrothermally-fed microbial tidal flat of the Paleoarchean? - Hints and evidence from the Moodies Group, Barberton Greenstone Belt, South Africa
Hannes STENGELChristoph HEUBECK
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract

The Paleoarchean Moodies Group (ca. 3,220 Ma) in the central Barberton Greenstone Belt comprises up to around 3.7km thick, sandy alluvial- to tidal-facies sediments interspersed with diverse, syn- to shortly post-depositional intermediate to mafic (sub-)volcanic units. Renown for harbouring the up-to-date oldest known record of macroscopic mappable biomats in a siliciclastic tidal environment on earth, these densely biolaminated sub- to supra-tidal sandstones are pervaded by abundant, up to 6m high fluid-escape structures. Feeding small sand volcano ridges, their distribution is largely restricted to a single, ca. 150m thick, highly silicified sandstone unit overlying the Moodies-aged Lomati River Sill, ca. 1km below. Semiquantitative μXRF-mapping of slabbed fluid-escape structures suggests substantial enrichments of Fe, Mg, Ti, and Cr between the conduits and their surrounding beds, implying influences past mere microbial fluid-retention and overpressure build-up from decaying biomats in the shallow subsurface. Supported by sediment textures indicative of argillaceous and sericitic alteration, Raman temperatures ca. 50 – 100°C above the regional maximum, and past field observations of hydrothermal alteration and peperites nearby, we propose the substantial involvement of hydrothermal fluids generated in the thermal aureole of the cooling Lomati River Sill. Thermal and chemical gradients may have boosted microbial growth, while surficial pre-compaction silicification favoured the preservation of delicate microbial remains.

Content from these authors
© 2023 The Geological Society of Japan
Previous article Next article
feedback
Top