Genome Informatics
Online ISSN : 2185-842X
Print ISSN : 0919-9454
ISSN-L : 0919-9454
INFERRING DIFFERENTIAL LEUKOCYTE ACTIVITY FROM ANTIBODY MICROARRAYS USING A LATENT VARIABLE MODEL
JOSHUA W. K. HORAJEEV KOUNDINYATIBÉRIO S. CAETANOCRISTOBAL G. DOS REMEDIOSMICHAEL A. CHARLESTON
Author information
JOURNAL FREE ACCESS

2008 Volume 21 Pages 126-137

Details
Abstract
Recent development of cluster of differentiation (CD) antibody arrays has enabled expression levels of many leukocyte surface CD antigens to be monitored simultaneously. Such membrane-proteome surveys have provided a powerful means to detect changes in leukocyte activity in various human diseases, such as cancer and cardiovascular diseases. The challenge is to devise a computational method to infer differential leukocyte activity among multiple biological states based on antigen expression profiles. Standard DNA microarray analysis methods cannot accurately infer differential leukocyte activity because they often fail to take the cell-to-antigen relationships into account. Here we present a novel latent variable model (LVM) approach to tackle this problem. The idea is to model each cell type as a latent variable, and represent the class-to-cell and cellto-antigen relationships as a LVM. Once the parameters of the LVM are learned from the data, differentially active leukocytes can be easily identified from the model. We describe the model formulation and assumptions which lead to an efficient expectationmaximization algorithm. Our LVM method was applied to re-analyze two cardiovascular disease datasets. We show that our results match existing biological knowledge better than other methods such as gene set enrichment analysis. Furthermore, we discuss how our approach can be extended to become a general framework for gene set analysis for DNA microarrays.
Content from these authors
© Japanese Society for Bioinformatics
Previous article Next article
feedback
Top