Journal of the Geothermal Research Society of Japan
Online ISSN : 1883-5775
Print ISSN : 0388-6735
ISSN-L : 0388-6735
Development of a Hydrothermal System by Conductive Cooling of the Heat Source
A Case Study of Kakkonda Geothermal System, Japan
Sachio EHARAYasuhiro FUJIMITSUShuhei YAMAKAWAHidefumi BABA
Author information
JOURNAL FREE ACCESS

2001 Volume 23 Issue 1 Pages 11-23

Details
Abstract
The Kakkonda geothermal field, northern Japan is a typical hot water dominated type geothermal system. Recently, the deep well named WD-la penetrated the shallow reservoir (at the depth of about 1500 m and above), the deep reservoir (at the depth between 1500 m and 3100 m) and the heat source (at the depth of about 3100 m and below). The temperature profile was obtained to the bottom at the depth of 3729 m where the temperature was above 500°C. The rock type of the heat source is young granite. The Kakkonda hydrothermal system is understood as follows; that is, the hot water convection has developed in the upper permeable formation located at the depth of 3000 m and above after the intrusion of the young heat source at such a shallow depth of 3000 m. A numerical simulation is carried out based on a simple two-dimensional hot water convective model with a conductive cooling heat source below the permeable formation. As the result, it is estimated that the Kakkonda geothermal system has developed during tens of thousands of years after the time of intrusion and is in the most active stage at present. This means that the age of the Kakkonda geothermal system is much younger than those of other well-known geothermal systems such as Wairakei and Kawerau in New Zealand. This simple model may explain the temperature profile down to the bottom of the deep well and the flow pattern of hot water in the permeable formation.
Content from these authors
© The Geothermal Research Society of Japan
Previous article
feedback
Top