Journal of High Pressure Institute of Japan
Online ISSN : 1347-9598
Print ISSN : 0387-0154
ISSN-L : 0387-0154
Original Paper
Nonlinear Finite Element Analysis of Collapse Loads of Cylindrical Shells Subjected to Combined Longitudinal Thermal Loads and External Pressure
Shunji KATAOKATakuya SATO
Author information
JOURNAL FREE ACCESS

2008 Volume 46 Issue 5 Pages 311-318

Details
Abstract
The inner tube of the double-tube reactors used in some chemical process units must be designed to resist buckling. When the inner tube is operated at a higher temperature and at a lower pressure and outer tube is operated at a lower temperature and at a higher pressure, the inner tube will be subjected to combined thermal loads and external pressure. ASME Code Sec. VIII Div. 1 provides a design procedure for shells, based on a B-chart, to ensure against buckling under external pressure, however, additional consideration should be made where plastic deformation may occur due to very large longitudinal thermal loads.
In this study, nonlinear finite element analyses were performed to investigate the collapse of thick-walled cylindrical shells subjected to combined thermal loads and high external pressures. Two nonlinearities, a material nonlinearity (elastic-plastic behavior) and a geometric nonlinearity (large deformation) , were considered in these analyses. The effects of initial imperfection in the shells (out-of-roundness) as well as of thermal loads were studied. The results showed that the longitudinal thermal loads reduce the plastic collapse load especially when the thermal loads are tensile. It was also shown that the loading sequence has a large effect on the collapse load especially when the thermal stress was larger.
Content from these authors
© 2008 by High Pressure Institute of Japan
Previous article Next article
feedback
Top