Hypertension Research
Online ISSN : 1348-4214
Print ISSN : 0916-9636
ISSN-L : 0916-9636
Review
Role of Interstitial ATP and Adenosine in the Regulation of Renal Hemodynamics and Microvascular Function
Akira NISHIYAMAMatlubur RAHMANEdward W. INSCHO
Author information
JOURNAL FREE ACCESS

2004 Volume 27 Issue 11 Pages 791-804

Details
Abstract

The role of adenosine in the regulation of renal hemodynamics and function has been studied extensively; however, another purine agent, ATP, is also gaining recognition for its paracrine role in the kidney. Adenosine and ATP bind to specific membrane-bound P1 and P2 purinoceptors, respectively, and initiate a variety of biological effects on renal microvascular tone, mesangial cell function, and renal epithelial transport. The purpose of this review is to summarize the potential roles of interstitial ATP and adenosine as regulators of renal hemodynamics and microcirculation. In vitro blood-perfused juxtamedullary nephron preparation was used to assess the roles of ATP and adenosine in the regulation of renal microvascular tone. This approach mimics the adventitial exposure of renal microvascular smooth muscle to ATP and adenosine synthesized locally and released into the interstitial fluid. ATP selectively vasoconstricts afferent but not efferent arterioles via P2X and P2Y receptors, whereas, adenosine vasoconstricts both vascular segments via activation of adenosine A1 receptors. Furthermore, selective P2X and P2Y receptor stimulation increases intracellular calcium concentration in vascular smooth muscle cells that are freshly isolated from the preglomerular microvasculature. These data support the hypothesis that interstitial ATP plays a critical role in the control of renal microvascular function through mechanisms that are independent of adenosine receptors. We have recently developed a renal microdialysis method to determine the dynamics of ATP and adenosine levels in the renal cortical interstitium. In this review, we also summarize current knowledge pertaining to the alterations in renal interstitial ATP and adenosine in some pathophysiological conditions. (Hypertens Res 2004; 27: 791-804)

Content from these authors
© 2004 by the Japanese Society of Hypertension
Previous article Next article
feedback
Top