Abstract
5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements.
This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.