IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Neural Network, Fuzzy and Chaos Systems>
A Brain-like Learning System with Supervised, Unsupervised and Reinforcement Learning
Takafumi SasakawaJinglu HuKotaro Hirasawa
Author information
JOURNAL FREE ACCESS

2006 Volume 126 Issue 9 Pages 1165-1172

Details
Abstract

Our brain has three different learning paradigms: supervised, unsupervised and reinforcement learning. And it is suggested that those learning paradigms relate deeply to the cerebellum, cerebral cortex and basal ganglia in the brain, respectively. Inspired by these knowledge of brain, we present a brain-like learning system with those three different learning algorithms. The proposed system consists of three parts: the supervised learning (SL) part, the unsupervised learning (UL) part and the reinforcement learning (RL) part. The SL part, corresponding to the cerebellum of brain, learns an input-output mapping by supervised learning. The UL part, corresponding to the cerebral cortex of brain, is a competitive learning network, and divides an input space to subspaces by unsupervised learning. The RL part, corresponding to the basal ganglia of brain, optimizes the model performance by reinforcement learning. Numerical simulations show that the proposed brain-like learning system optimizes its performance automatically and has superior performance to an ordinary neural network.

Content from these authors
© 2006 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top