IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Softcomputing, Learning>
Flexible Rule Mining for Difference Rules and Exception Rules from Incomplete Database
Kaoru ShimadaKotaro Hirasawa
Author information
JOURNAL FREE ACCESS

2010 Volume 130 Issue 10 Pages 1873-1881

Details
Abstract
Two flexible rule mining methods from incomplete database are proposed using Genetic Network Programing (GNP). GNP is one of the evolutionary optimization techniques, which uses the directed graph structure. One of the methods extracts the rules showing the different characteristics between different classes in a database. The method can obtain the rules like 'if P then Q' is interesting only in the focusing class. The other one mines interesting rules like even if itemset X and Y have weak or no statistical relation to class item C, the join of X and Y has strong relation to class item C. An incomplete database includes missing data in some tuples. Generally, it is not easy for Apriori-like methods to extract difference rules and exception rules from incomplete database. We have estimated the performances of the rule extraction using incomplete data in the environmental and medical field.
Content from these authors
© 2010 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top