Abstract
As a cardiac pacemaker, sinoatrial node spontaneously generates periodic electrical signals (action potentials) in its cells. The action potential generation is deeply related to various ion channels in cell membranes, and the abnormalities of ion channels cause sinus arrhythmia. We use the Zhang model of sinoatrial node cells to investigate the relation between pacemaker rhythm (frequency of action potential generation) and ion channels. The Zhang model is described by the Hodgkin-Huxley-type nonlinear ordinary differential equations, and its parameter values vary between periphery and center cells of sinoatrial node. We analyze the bifurcation structure of the Zhang model, and investigate the variability of pacemaker rhythm and its sensitivity on ion channel conductance changes for both periphery and center cells. Moreover, these results are compared with the previous results of another sinoatrial node cell model: Yanagihara-Noma-Irisawa model.