IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
Special Issue Review
Online Feature Extraction Algorithms for Data Streams
—Incremental Principal Component Analysis—
Seiichi Ozawa
Author information
JOURNAL FREE ACCESS

2012 Volume 132 Issue 1 Pages 6-13

Details
Abstract
Along with the development of the network technology and high-performance small devices such as surveillance cameras and smart phones, various kinds of multimodal information (texts, images, sound, etc.) are captured real-time and shared among systems through networks. Such information is given to a system as a stream of data. In a person identification system based on face recognition, for example, image frames of a face are captured by a video camera and given to the system for an identification purpose. Those face images are considered as a stream of data. Therefore, in order to identify a person more accurately under realistic environments, a high-performance feature extraction method for streaming data, which can be autonomously adapted to the change of data distributions, is solicited. In this review paper, we discuss a recent trend on online feature extraction for streaming data. There have been proposed a variety of feature extraction methods for streaming data recently. Due to the space limitation, we here focus on the incremental principal component analysis.
Content from these authors
© 2012 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top