IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Electrical and Electronic Circuit, LSI>
Sorting-Based I/O Connection Assignment and Non-Manhattan RDL Routing for Flip-Chip Designs
Ran ZhangTakahiro Watanabe
Author information
JOURNAL FREE ACCESS

2015 Volume 135 Issue 12 Pages 1535-1544

Details
Abstract

In modern VLSI designs, a flip-chip package is widely used to meet the higher integration density and the larger I/O counts of circuits. Recently the I/O buffers are mapped onto bump balls without changing the module placement using re-distribution layer (RDL) in flip-chip designs. In this research, a sorting-based I/O connection assignment and non-Manhattan RDL routing method is proposed for area I/O flip-chip designs. The approach initially assigns the I/O buffers to bump balls by sorting the Manhattan distance between them. Three kinds of pair-exchange procedures are then carried out to improve the initial assignment. Then to shorten the wire length, non-Manhattan RDL routing is adopted to connect the I/O buffers and bump balls. Finally some un-routed connections are ripped up and rerouted. The experimental results show that the proposed method is able to obtain the routes with shorter wire length in reasonable CPU times.

Content from these authors
© 2015 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top