IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
A Multilayer Network Model Using Weighted-Sum-Based Sine Elements
Koichi OikeSeiichi KoakutsuHironori Hirata
Author information
JOURNAL FREE ACCESS

1998 Volume 118 Issue 10 Pages 1509-1515

Details
Abstract
In this paper, we propose a new network element model named a“weighted-sum-based sine element”for neural networks. We also derive a learning algorithm based on the back-propagation algorithms for multilayer networks. The weighted-sum-based sine element receives an inner product between an input pattern vector and its weight vector as its input value, and uses an mine transformation of sine function as its output function. The proposed“weighted-sum-based sine network”is capable of improving the learning speed as well as the convergence rate because its output function does not have any saturated regions which cause slow learning speed of the back-propagation learning using standard sigmoid elements. We demonstrate the advantages of the proposed network by solving N-bits parity problems, Fisher's Iris classification problem, a function approximation problem and the two-spirals problem. Experimental results indicate that our weighted-sum-based sine network consistently obtains better results than the conventional sigmoid network in terms of both the learning speed and the convergence rate.
Content from these authors
© The Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top