International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Laser Machining
Characteristics of Spatter in Micro-Drilling of Metal Sheet by Pulsed Nd:YAG Laser
Yasuhiro OkamotoHibiki YamamotoAkira Okada
Author information
JOURNAL OPEN ACCESS

2016 Volume 10 Issue 6 Pages 874-881

Details
Abstract

In laser cutting and drilling process, molten material was scattered as spatter, which deteriorates the surface integrity of a workpiece because of the thermal damage. It is expected that the control of assist gas flow can reduce the adhesion of spatter. In order to investigate the improvement method of thermal damage due to the adhesion of spatter, it is required to clarify characteristics of spatter. Therefore, a method was developed to collect and analyze spatter based on the use of high-speed video cameras in the laser micro-drilling process, and the characteristics of spatter movement were numerically investigated by CFD analysis. The scattering velocity and angle of the spatter were investigated by recognizing and tracking spatter with the high-speed video observation. The movement of spatter was observed by using two high-speed video cameras, and analyzed by using a two-direction tracking method, in which the 3D tracking lines of spatter particles were reconstructed in the forward and backward frames, and the actual trajectory of individual spatter particle was obtained by averaging those tracking lines. These measurements revealed that the initial velocity of spatter was mainly distributed from 52 m/s to 200 m/s with an average velocity of 129 m/s. The initial angle of spatter was mainly distributed between 0 and 30 degrees from the workpiece surface in the upward direction. There was little correlation between the initial velocity and angle of spatter. The diameter of spatter was mainly distributed from 1 μm to 4 μm with an average diameter of 3.7 μm. It is important to use the processing conditions achieving the smaller spatter diameter in order to reduce the thermal damage caused by spatter. Although coaxial assist gas flow has an influence on the spatter behavior, that time period is very short. Therefore, it is important to control the spatter behavior outside of the coaxial assist gas flow by using an additional gas flow to prevent the thermal damage to the workpiece surface.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top