International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Development of an Injection Mold Capable of Melt Flow Control and Induction Heating and Cooling
Yasuhiko MurataHidekazu SuzukiShogo Kashiwagi
Author information
JOURNAL OPEN ACCESS

2017 Volume 11 Issue 6 Pages 985-992

Details
Abstract

Weldlines are a type of defect in polymer injection molding and are known to impair the appearance and mechanical strength of the molded product. A previous study involved designing and fabricating an induction heating and cooling mold that incorporates an induction coil, allowing it to rapidly heat up. The study verified that the use of this mold prevents weldlines and improves the surface properties of the molded product. Although it is possible to prevent impairment of the external appearance caused by weldlines or the exposure of glass fibers on the surface when the mold is applied to glass fiber reinforced thermoplastic, the results of the previous study indicated that it did not significantly improve the mechanical strength. Hence, the present study involved designing and fabricating an injection mold capable of melt flow control in addition to induction heating and cooling by incorporating a melt flow control mechanism that employs a movable core pin to control the flow direction in the mold used in the previous study. The mold is used to form samples of short- and long-glass fiber reinforced polypropylene while simultaneously performing heating and cooling and melt flow control to obtain samples with smooth flat surfaces in which the exposure of glass fibers is prevented while exhibiting increased bending strength.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article
feedback
Top