International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Experimental Verification of Robust Controller for Electronic Governor of Small Gas Engine Generator
Koichi OkamuraYuya TanakaKenji TakahataJianming Yang
Author information
JOURNAL OPEN ACCESS

2018 Volume 12 Issue 1 Pages 123-131

Details
Abstract

In this paper, a novel application of a robust controller for an electronic governor of a small gas engine generator is presented. There are a few studies regarding the fluctuations in the concentration of bio-methane fuel and load fluctuation of a generator using an approximately 1-kW small gas engine generator. For a relatively small-scale local-production-type energy circulation system, such as the gas energy from a Tambo (GET) system, it is necessary to develop a small gas engine generator that can use the generated unpurified bio-methane gas to accommodate the load fluctuation. The GET system is a bio-methane gas production system, utilizing the sustainable resources from a paddy field, without requiring any distinct auxiliary facilities. We have examined the bio-methane gas produced from the GET system as the fuel of a small gas engine generator, which can supply electric energy and thermal energy to a greenhouse. We have studied the application of a robust engine controller by combining a model matching controller and an optimal observer (MM_OBSV controller) with the electronic governor of the small gas engine generator. The results indicate that the control system is adapted for the input disturbance (load fluctuation and modeling error), with the MM_OBSV controller embedded in the electronic governor of the small gas engine generator.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article
feedback
Top