International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Machinability of Thermo-Plastic Carbon Fiber Reinforced Plastic in Inclined Planetary Motion Milling
Hidetake TanakaMitsuru Kitamura
Author information
JOURNAL OPEN ACCESS

2018 Volume 12 Issue 5 Pages 750-759

Details
Abstract

The study deals with an improved method of milling thermo-plastic CFRP with a radius end mill. The authors use inclined planetary milling to carry out a fine CFRP boring technique. The inclined planetary motion milling consists of the two independent spindle motions of tool rotation and revolution. The eccentricity of the tool rotation axis is realized by a few degrees of inclination from the revolution axis. The movement of eccentric mechanism can be reduced by comparing it with that of orbital drilling. The inclined planetary motion milling reduces inertial vibration and decreases cutting force. Owing to the geometrical cutting principle, material delamination and burrs can be decreased. Thermo-plastic CFRP has recently been under development as an alternative structural material for the next generation of automobiles and in response to demands for bored fastening holes. The shape of the cutting edge of the ball end mill is suitable for the inclined planetary milling, as revealed by results of past experiments done on thermo-set CFRP. However, the ball end mill has left burrs and melted matrix on the exit side in the case of thermo-plastic CFRP. The radius end mill has the advantage over the ball end mill in terms of finishing fine boring. Based on the consideration of the schematic model and experiments using the Taguchi method, the improved milling conditions are examined.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top