International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advanced Cutting Science and Technologies
Tool Wear Reduction Effect of Oil-Immersion Treatment and its Surface Modification Mechanism
Katsuhiko SakaiHiroo ShizukaKazumasa Iwakura
Author information
JOURNAL OPEN ACCESS

2019 Volume 13 Issue 1 Pages 32-40

Details
Abstract

This study describes a new surface treatment method that involves immersing sintered cutting tools into a high-pressure, high-temperature processing liquid. Cutting experiments were performed, and the results show that oil-immersion treatment helps reduce tool wear. However, this treatment limits the applications of treated carbide tools, e.g., they become unsuitable for heavy-cutting conditions. After the cutting test, surface analyses of the treated carbide tools were performed using FT-IR, SEM, EPMA, and XPS to verify the effect of oil-immersion treatment on tool-wear reduction. FT-IR analysis showed that, following oil-immersion treatment, trace quantities of the coolant remained on the tool surface, which could be readily removed by ultrasonic cleaning. Despite the removal of the processing liquid, the tool subjected to oil immersion exhibited less wear than the non-treated tool. SEM and EPMA examinations revealed that oil-immersion treatment reduced the amount of cobalt on the tool surface, forming sulfur deposits. EPMA analysis indicated that less cobalt binder was found on the surface after oil-immersion treatment, suggesting that the reduction in the amount of cobalt caused tungsten carbide particles to be exposed.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top