International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advanced Cutting Science and Technologies
Frictional Stress Derived on Interface Between Work and Tool Materials on Quasi-Dislocation Model for Cutting Simulations
Tohru IharaXiaoqi SongYukio Takahashi
Author information
JOURNAL OPEN ACCESS

2019 Volume 13 Issue 1 Pages 6-12

Details
Abstract

There growing demand for a new FEM cutting simulation method capable of dealing with the peculiar friction phenomena that occur on the interface between work and tool materials. In this report, we first seek a theoretical formula for quasi-dislocation motions as a model to explain the phenomena that occur on the interface between the work and tool materials by applying the dislocation theory. Next, we present our method for deriving the frictional stress on a tool face from quantum mechanical calculations based on the above-mentioned model. It uses the molecular orbital method, which can only conduct static calculations, to obtain the shear stress under high strain velocities. As one of its features, it does not use complicated experiments and the first-principle molecular dynamic calculations that is high costs.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top