International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Laser-Based/Assisted Manufacturing
Porosity and Tensile Properties of Rhizoid Porous Structure Fabricated Using Selective Laser Melting
Shinji IshibashiKeita ShimadaHiroyasu KanetakaMasaki TsukudaTakumi MizoiMasataka ChuzenjiShoichi KikuchiMasayoshi MizutaniTsunemoto Kuriyagawa
Author information
JOURNAL OPEN ACCESS

2020 Volume 14 Issue 4 Pages 582-591

Details
Abstract

The reduced density of the autogenous bone around metal medical implants forces joint replacement patients to undergo revision surgery. The loss of bone density is caused by a significant difference in the elastic modulus between implants and autogenous bone. Various studies have attempted to reduce the elastic modulus of the implant to close the large gap in the two moduli. Porous metal is a promising material for reducing the elastic modulus of implants, but it is difficult to fabricate a closed-cell structure like bone using conventional porous metal fabrication methods. In this study, porous Ti-6Al-4V was prepared by selective laser melting, then its porosity was evaluated by X-ray computed tomography. Additionally, tensile test specimens of the porous structure were prepared and the effect of pores on the tensile properties was evaluated. Depending on the energy density, the structure of the porous body was found to form both closed- and open-cell structures. In the tensile specimens that showed the most favorable results, the elastic modulus was reduced by approximately 90%, and the tensile strength exceeded that of the annealed material. This indicates that a metal implant that has a low elastic modulus while maintaining strength can be obtained.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top