International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advances in Abrasive Technology
Investigation of Optimum Grinding Condition Using cBN Electroplated End-Mill for CFRP Machining
Shinnosuke YamashitaTatsuya FurukiHiroyuki KousakaToshiki HirogakiEiichi AoyamaKiyofumi InabaKazuna Fujiwara
Author information
JOURNAL OPEN ACCESS

2021 Volume 15 Issue 1 Pages 4-16

Details
Abstract

Recently, carbon fiber reinforced plastics (CFRP) have been used in various applications such as airplanes and automobiles. In CFRP molding, there are unnecessary portions on the outer area. Therefore, a machining process is required to remove them. Cutting and grinding are conventionally used in the finish machining of CFRPs. End-milling allows the removal of most of these portions. However, uncut fibers easily occur during end-milling. In contrast, a precise machined surface and edge are easily obtained using a grinding tool. Therefore, this research has developed a novel cubic boron nitride (cBN) electroplated end-mill that combines an end-mill and a grinding tool. This is a versatile tool that can cut and grind CFRPs by changing the direction of rotation of the tool. In this study, the effectiveness of the developed tool is investigated. First, the developed tool machined the CFRP by side milling. Consequently, cBN abrasives that were fixed on the outer surface of the developed tool did not detach in certain cutting conditions. Next, in order to generate a sharp edge on the CFRP and restrict the increase in the CFRP temperature with the cBN electroplated end-mill, the optimum abrasive size and grinding condition were investigated through the design of experiments. Moreover, the effectiveness of the developed tool was verified by comparing it with a conventional tool. As a result, smaller burrs and uncut fibers were observed after final machining with the developed tool under the derived optimum condition than those with conventional tools. However, the desired surface roughness could not be achieved as required by the airline industry. Therefore, oscillating grinding was applied. In addition, the formula of the theoretical surface roughness while using the developed tool was derived using the theory of slant grinding. As a result, the oscillating condition that led to the required surface roughness was obtained by theoretical analysis. In addition, the required value for the airline industry was achieved by oscillating grinding.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top