International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Improved Synchronous Motion of Linear and Rotary Axes While Avoiding Torque Saturation Under a Constant Feed Speed Vector at the Endmilling Point – Investigation of Motion Error Under Numerical Control Commanded Motion –
Takamaru SuzukiKazuki YoshikawaToshiki HirogakiEiichi AoyamaTakakazu Ikegami
Author information
JOURNAL OPEN ACCESS

2022 Volume 16 Issue 3 Pages 356-366

Details
Abstract

A five-axis machining center is known for its synchronous control capability, allowing complicated three-dimensional surfaces, such as propellers and hypoid gears, to be quickly created. Prior research has shown that it is necessary to improve not only the machined shape accuracy but also the machined surface roughness of free-form surfaces. Therefore, in this research, we aimed to maintain the feed speed vector at the endmilling point by controlling two linear axes and a rotary axis with a five-axis machining center to improve the machined surface quality. In previous research, we suggested reducing the shape error of machined workpieces (referred to as shape error in this research) by considering the differences in the servo characteristics of the three axes in the machining method. The shape error was significantly decreased by applying the proposed method, which uses a parameter (referred to as precedent control coefficient in this research) determined by calculation, rather than trial and error. Moreover, to maintain the feed speed vector at the endmilling point when machining complex shapes, a rapid velocity change in each axis is required, causing inaccuracy owing to torque saturation. The results of the experiments and simulations of previous research indicated that torque saturation can be evaluated via simulation. In this research, to reduce the shape error while avoiding torque saturation when movement has high angular velocity, we developed a theoretical method to obtain the most suitable precedent control coefficient of each axis by using a block diagram that considers torque saturation. Therefore, both shape error reduction and torque saturation avoidance can be realized by using the proposed method.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top