International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Recent Progress in Manufacturing Technology
Elucidation of Drilling Behavior on Workpiece Superimposed with Ultrasonic Vibration
Naofumi Tsuji Kota TakashimaAkira SakuradaKazuto MiyawakiHiromi Isobe
Author information
JOURNAL OPEN ACCESS

2022 Volume 16 Issue 5 Pages 552-561

Details
Abstract

This study quantitatively and theoretically clarifies the machining characteristics of the chisel engagement and the cutting-edge wear behavior in drilling in a workpiece superimposed with ultrasonic vibration. The machining phenomenon of drilling by this method considers being the same as drilling by ultrasonic vibration spindle from the viewpoint of the relative motion of the cutting edge and workpiece. However, the details have not been clarified yet. The chisel engagement behavior experiment at the initial stage of the drilling and cutting-edge wear experiment were carried out in this study. The chisel engagement behavior experiment revealed lower axial relative velocity results in a minor effect. In the cutting-edge life experiment, when the cutting fluid and the supply method were changed, the minimal oil with mist supply showed the same result as water-soluble with jet supply without breaking the drill. However, considerable wear was generated at the cutting edge in the initial drilling stage. When suitable ultrasonic vibration-assisted drilling was applied, initial wear decreased by 40% but could not be suppressed entirely. As a result of theoretical elucidation on this initial wear, it was proven that the flank face of the cutting edge contacted the workpiece when critical amplitude was exceeded. In the experiment to prove the validity of this theory, the initial wear occurred when the critical amplitude was exceeded. The cutting-edge wears increased in proportion to the working relief angle.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top