International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Recent Progress in Manufacturing Technology
A MEMS Device Integrating Multiple Cantilever Displacement Sensors to Evaluate Flat Machined Surfaces
Hiroki Shimizu Koichi TamiyaShoichiro MizukamiYuuma Tamaru
Author information
JOURNAL OPEN ACCESS

2022 Volume 16 Issue 5 Pages 582-587

Details
Abstract

Multi-point scanning measurement, which is effective in eliminating motion errors of the stage in on-machine profile measurement, requires multiple displacement sensors of equal pitch to measure displacements simultaneously. However, it is not easy to arrange small sensors with high alignment accuracy when applying the multi-point method at a narrow pitch. In addition, if many sensors can be arranged in parallel, improvement in measurement accuracy can be expected. Therefore, a new micro electro mechanical system (MEMS) device for straightness measurement, one that integrates 10 cantilever displacement sensors, has been proposed. This device can be expected to solve the problem involved in the multi-point method because of the characteristics of MEMS, as the semiconductor processing method can make mechanical structures with high accuracy and it can easily make the device with many identical structures. The device is designed to measure waviness less than 100 μm in height. Ten cantilevers of 11 mm length are fabricated in parallel with 1.8 mm pitch on a side of a base substrate 20 mm square. The strain induced by a displacement of the probe placed near the front edge of the cantilever is detected as a change in the resistance of the piezo resistor at the foot of the cantilever. In the fabrication process of this device, crystal anisotropic etching is performed for 12 hours to form probes 250 μm high. A new fabrication process is also proposed in which a protective process is added to prevent damage to the circuits already formed during the etching. A prototype is investigated, and it is found that the resistance value increases about 0.45% in proportion to the displacement of 100 μm. It is therefore confirmed that this device has the basic ability to detect displacement.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top