International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Design and Manufacturing for Environmental Sustainability
Analysis of Substance Flow and the Transition of Industrial Structure of Indium in Japan
Akihiro Yoshimura Yuma NishiokaYasunari Matsuno
Author information
JOURNAL OPEN ACCESS

2022 Volume 16 Issue 6 Pages 747-755

Details
Abstract

Indium is a rare metal that is an essential raw material for indium tin oxide (ITO) essential for transparent electrodes for displays. However, its supply is unstable as it is a by-product of zinc. In this research, we investigated the domestic substance flow of indium used for liquid crystal applications in Japan. Accordingly, we quantitatively evaluated the amount of indium contained in the process loss and the content of indium in end-of-life products. Through this quantification, we examined the visualization of loss in the entire flow and the usability of end-of-life products as secondary production. Consequently, it was found that the amount of indium used in the production of end-use-products in Japan has increased significantly due to the growth of liquid crystal display TVs, particularly in preparation for the transition to terrestrial digital broadcasting in 2011, and has drastically decreased after 2012. Meanwhile, some manufacturing bases have been relocated from Japan to other countries, and a certain proportion of end-use-products are imported, by which we infer the domestic input amount of end-use-products in recent years is estimated to have remained at approximately 4 t. Based on the result, after having continued to increase to the maximum value of approximately 70 t in 2014, the in-use stock has exhibited a gradually decreasing trend. Moreover, the indium content in end-of-life products has continued to increase, and in 2015, it exceeded the amount of the end-use-products input into society. Furthermore, compared with the process loss at the time of processing from ITO to a display, the gap has been narrowed from 100 times or more, and the indium content in end-of-life products in 2008 to about 15 times in 2017. These results suggest that the recycling potential of end-of-life products has increased with the spread of indium-based products.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top