International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Application of Artificial Intelligence Techniques in Production Engineering
Statistical and Artificial Intelligence Analyses of Blast Treatment Condition Effects on Blast-Assisted Injection Molded Direct Joining
Shuohan Wang Fuminobu KimuraShuaijie ZhaoEiji YamaguchiYuuka ItoYukinori SuzukiYusuke Kajihara
Author information
JOURNAL FREE ACCESS

2023 Volume 17 Issue 2 Pages 156-166

Details
Abstract

Efficient hybrid joining methods are required for joining metals and plastics in the automobile and airplane industries. Injection molded direct joining (IMDJ) is a direct joining technique that uses metal pretreatment and injection molding of plastic to form joints without using any additional parts. This joining technique has attracted attention from industries for its advantages of high efficiency and low cost in mass production. Blast-assisted IMDJ, an IMDJ technique that employs blasting as the metal pretreatment, has become suitable for the industry because metal pretreatment can be performed during the formation of the metal surface structure without chemicals. To satisfy industry standards, the blast-assisted IMDJ technique needs to be optimized under blasting conditions to improve joining performance. The number of parameters and their interactions make this problem difficult to solve using conventional control variable methods. We propose applying statistical and artificial intelligence analyses to address this problem. We used multiple linear regression and back propagation neural networks to analyze the experimental data. The results elucidated the relationship between the blasting conditions and joining strength. According to the machine learning predicted results, the best joining strength in blast-assisted IMDJ reached 22.3 MPa under optimized blasting conditions. This study provides new insights into similar engineering problems.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top