International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on the Latest Machine Tool and Manufacturing Technologies
Anomalous Change Detection in Drilling Process Using Variational Autoencoder with Temperature Near Drill Edge
Haruhiko Suwa Kazuya OdaKoji Murakami
Author information
JOURNAL OPEN ACCESS

2023 Volume 17 Issue 5 Pages 449-457

Details
Abstract

The different flexibility and diversity requirements for respective manufacturing units have made modern cutting tool management much more crucial and complicated, as a greater variety of tools and more frequent tool changes are required to enhance production efficiency and avoid unplanned manufacturing downtime. Developing in-process anomalous change detection methods has been identified as an essential challenge. Machine learning techniques have been widely applied in tool condition monitoring and anomalous change detection. As anomaly data is rare in manufacturing processes, supervised machine learning approaches (such as regression and classification) are not applied to the anomalous change detection problem. Rather, self-supervised machine learning (a representative type of unsupervised machine learning) is applied. This study describes a variational autoencoder (VAE) neural network and proposes a VAE-based method for tool condition monitoring and change detection in a drilling process using the temperature near a drill edge. The proposed VAE evaluates the drill tool condition based on the reconstruction error between the input temperature and its estimate per a drill unit process through the trained network. Computational simulations demonstrate that the proposed VAE network model can avoid overfitting to the anomaly data and that its expressive power is greater than that of the conventional autoencoder model.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top