International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Recent Progress in Precision Engineering
Detection of Multiscale Deterioration from Point-Clouds of Furnace Walls
Tomoko AokiErika YamamotoHiroshi Masuda
Author information
JOURNAL OPEN ACCESS

2023 Volume 17 Issue 6 Pages 610-618

Details
Abstract

Deterioration surveys of large structures such as furnaces have been mainly conducted by visual inspection, but it is desirable to automatically detect deterioration using point clouds captured by the terrestrial laser scanner. In this study, we propose flexible methods for detecting various scales of cracks, delamination, and adhesion on furnace walls by using a machine learning technique. Since small cracks have few geometrical features, they are detected from the reflection intensity images generated by projecting a point cloud onto a two-dimensional plane. For detecting cracks on the image, we use the U-Net fine-tuned by crack images denoised with a median filter. For detecting delamination and adhesion, a wall surface is approximated by a smooth B-spline surface, and deterioration is detected as differences between the point cloud and the approximated surface. However, in this method, the resolution of the B-spline surface has to be carefully determined according to the expected deterioration sizes. To robustly detect deterioration at various scales, we introduce multiscale 3D features, and detect deterioration using both multiscale 3D features and 2D features. In actual walls, it is difficult to distinguish between cracks and delamination because delamination grows from cracks. To detect both types of deterioration in a uniform manner, we combine the two detectors and propose an integrated detector for detecting deterioration at various scales. Our experimental results showed that our methods could stably detect various scales of degradation on furnace walls.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top