International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Unsupervised Anomaly Detection for IoT-Driven Multivariate Time Series on Moringa Leaf Extraction
Kurnianingsih Retno WidyowatiAchmad Fahrul AjiEri Sato-ShimokawaraTakenori OboNaoyuki Kubota
Author information
JOURNAL OPEN ACCESS

2024 Volume 18 Issue 2 Pages 302-315

Details
Abstract

The extraction of valuable compounds from moringa plants involves complex processes that are highly dependent on various environmental and operational factors. Monitoring these processes using Internet of Things (IoT)-based multivariate time series data presents a unique opportunity for improving efficiency and quality control. Multivariate time series data, characterized by multiple variables recorded over time, provides valuable insights into the behavior, interactions, and dependencies among different components within a system. However, with the increasing complexity and volume of IoT data generated during moringa extraction, the anomaly detection becomes challenging. The objective of this study is to develop a robust and efficient system capable of automatically detecting anomalous patterns in real time, providing early warning signals to operators, and facilitating timely interventions. This paper proposes a novel hybrid unsupervised anomaly detection model combining density-based spatial clustering of applications with noise and k-nearest neighbors for IoT-based multivariate time series data. We conducted extensive experiments on real-world moringa extraction, demonstrating the effectiveness and practicality of our proposed approach. In comparison to other anomaly detection methods, our proposed method has the highest precision value of 0.89, the highest recall value of 0.89, and the highest accuracy value of 0.87. Future research will measure and optimize actuators (relays and motors) from anomaly detection to action. It can also be used with forecasting algorithms to detect anomalies in the coming minutes.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top