International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advanced Metal Cutting Technologies
Effect of Strain Hardening on Burr Control in Drilling of Austenitic Stainless Steel
Shoichi Tamura Kota OkamuraDaisuke UetakeTakashi Matsumura
Author information
JOURNAL OPEN ACCESS

2024 Volume 18 Issue 3 Pages 417-425

Details
Abstract

Austenitic stainless steel has been widely used in various industries, such as aerospace, medical, and hydrogen energy, due to its high strength over a wide range of temperatures, corrosion resistance, and biocompatibility. However, stainless steel is a difficult-to-cut metal because its ductility and low thermal conductivity induce a strain hardening with significant plastic deformation at high temperatures. Burr formed at the back side of a plate is a critical issue which deteriorates the surface quality, especially in drilling. Burr removal operation, therefore, should be done in the machine shop. This study discusses the effect of strain hardening of austenitic stainless steel, SUS 316L, on burr formation. Hardness and cutting tests were conducted to compare the strain hardening effect for three types of workpieces: as-received, pre-machined, and tensile treated specimens. In the employed specimens, the tensile treated specimen is harder than the as-received specimen. Those specimens have uniform hardness in the depth direction from surfaces. Pre-machined specimen, in which the back side of the plate was finished by face milling, has a distribution of hardness in the depth direction from a surface. The highest hardness appears in the subsurface of the pre-machined specimen. The cutting forces in the steady processes, in which the entire edges remove material, were nearly the same as the tested specimens each other. However, remarkable differences were confirmed in the chip thickness and burr formation. The higher strain hardening of the tensile treated specimen is effective to suppress burr formation. The cutting characteristics are then identified to associate burr control with the shear plane model of orthogonal cutting using an energy-based force model. The shear stresses, shear angles, and friction angles of the tensile treated and as-received specimens are compared to discuss the effect of strain hardening on reduction of burr formation.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top