2014 Volume 8 Issue 4 Pages 530-538
The machining accuracy of ultra-precision machine tools relies on the performance of the spindle and linear table. The machining accuracy of ultra-precision machine tools is now at the level of several tens of nanometers. In order for ultra-precision machine tools to achieve machining accuracy, a precise spindle system is indispensible. High bearing stiffness is particularly important to minimize displacement due to the cutting force. This paper considers a spindle design supported by high-stiffness water hydrostatic thrust bearings. An objective of this study is to design a precision spindle supported by water hydrostatic thrust bearings with 1 kN/μm bearing stiffness. The bearing restrictors are chosen so that the highest stiffness can be obtained for given bearing parameters. The influences of gap sizes and supply water pressure on the bearing stiffness are presented. Based on the feasibility study done on the design of high-stiffness water hydrostatic thrust bearings, the spindle is designed and developed. The influences of the water pressure on the spindle deformation and bearing stiffness are also investigated.
This article cannot obtain the latest cited-by information.