International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Contributions of High-Speed Cutting and High Rake Angle to the Cutting Performance of Natural Rubber
Naoki TakahashiJun Shinozuka
Author information
JOURNAL OPEN ACCESS

2014 Volume 8 Issue 4 Pages 550-560

Details
Abstract

This study investigates the contributions of high-speed cutting and a high rake angle to the improvement of the cutting performance of natural rubber. Orthogonal cutting experiments were conducted at cutting speeds ranging from 1.0 m/s to 141.1 m/s. The rake angles examined were 0°, 20° and 50°. The following results were obtained from the experiments. The cutting ratio is almost 1.0 regardless of the cutting speed and rake angle. The cutting force rises rapidly as the cutting speed increases. High-speed cutting or a high rake angle eliminates tear defects on the machined surface and reduces chipping defects at the entry edge of the workpiece. An uncut portion, however, always remains at the exit edge. The cross-sectional shape of the machined surface becomes concave. Besides, the machined surface comes into broad contact with the clearance face. These degradations in the shape accuracy arise from the large elastic distortion that occurs in the shear zone. Increasing the cutting speed improves the flatness of the machined surface. Although an analysis of the cutting mechanism reveals that the apparent stiffness of the material in the shear zone is enhanced with increasing the cutting speed, a very high cutting speed worsens the shape accuracy because of the development of shock waves. Depending on the rake angle, there is a critical cutting speed that should not be exceeded to maximize the cutting performance of natural rubber.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top