International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Mini Special Issue on Virtual Manufacturing
Improvement of the Static and Dynamic Behavior of a Milling Robot
Michael Friedrich ZaehOliver Roesch
Author information
JOURNAL OPEN ACCESS

2015 Volume 9 Issue 2 Pages 129-133

Details
Abstract

Because of the high flexibility and low investment costs, industrial robots are increasingly being employed for machining processes. However, milling robots can only be used for applications requiring low accuracy and minor cutting forces. The main reason for this is the low static and dynamic stiffness of the robot structure, which lead to huge deflections of the tool and heavy chatter oscillations, especially when steel is being machined. To extend the areas in which milling robots are applied, a model-based controller to compensate for path deviation has been developed at the Institute of Machine Tools and Industrial Management of TU Munich (iwb). In addition, process-based strategies to reduce chatter have been analyzed. This paper focuses on the dynamic behavior of robots to increase the stability of the cutting process, but it also gives an overview of the design of the controller for static deviation compensation.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
Previous article Next article
feedback
Top