International Journal of Fluid Machinery and Systems
Online ISSN : 1882-9554
ISSN-L : 1882-9554
Original papers
The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump
Long YunWang DezhongYin JunlianCai YoulinFeng Chao
Author information
JOURNAL FREE ACCESS

2017 Volume 10 Issue 2 Pages 138-145

Details
Abstract

waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the k-ε turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency fR, the corresponding amplitude of channel head are higher than the straight pipe at 1.0Фd and 1.2Φd flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at 0.8Φd flow rates.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR
Previous article Next article
feedback
Top