International Journal of Fluid Machinery and Systems
Online ISSN : 1882-9554
ISSN-L : 1882-9554
Original papers
Experimental and Numerical Investigation of the Erosive Potential of a Leading Edge Cavity
Jean-Bastien CarratRegiane Fortes-PatellaJean-Pierre Franc
Author information
JOURNAL FREE ACCESS

2019 Volume 12 Issue 2 Pages 136-146

Details
Abstract

This paper presents a joint experimental and numerical analysis of the erosive potential of an unsteady cavity that develops at the leading edge of a two-dimensional hydrofoil and periodically sheds vapour clouds. From an experimental viewpoint, the erosive potential was characterized by pressure pulse height spectra. The hydrofoil was equipped with eight pressure sensors made of PVDF piezoelectric film that allowed the measurement of flow aggressiveness at different locations along the hydrofoil chord. It was shown that the mean peak rate over a large number of cavity pulsations exhibits a maximum at a distance from the leading edge close to the maximum cavity length. Moreover, the increase in flow aggressiveness caused by an increase in flow velocity can be explained by an increase in both amplitude and frequency of impact loads. From a numerical viewpoint, the unsteady Reynolds averaged Navier-Stokes (RANS) equations were solved using a modified k-ε RNG turbulence model together with a homogeneous cavitation model within a two-dimensional approach. Flow aggressiveness was estimated from the Lagrangian derivative of the computed void fraction that allows identifying the regions of collapse of vapour structures. Three different critical regions from an erosive viewpoint were numerically identified. Apart from the region of collapse of the shed cloud (which was not instrumented in the present study), the computations showed a maximum of aggressiveness around the maximum cavity length as found experimentally. Another region of high aggressiveness closer to the leading edge and associated to the upward movement of the re-entrant jet was predicted by the present numerical model but not confirmed experimentally, which probably shows the limitation of a two-dimensional approach.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR
Previous article Next article
feedback
Top