International Journal of Fluid Machinery and Systems
Online ISSN : 1882-9554
ISSN-L : 1882-9554
Original Papers
3D Casing-Distributor Analysis for Hydraulic Design Application
Christophe DevalsYing ZhangJulien DompierreThi C. VuLuca ManganiFrançois Guibault
Author information
JOURNAL FREE ACCESS

2015 Volume 8 Issue 3 Pages 142-154

Details
Abstract

Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard k-ω shear stress transport (SST) turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR
Previous article Next article
feedback
Top