Information and Media Technologies
Online ISSN : 1881-0896
ISSN-L : 1881-0896
Media (processing) and Interaction
Hypothesis Ranking Based on Semantic Event Similarities
Taiki MiyanishiKazuhiro SekiKuniaki Uehara
Author information
JOURNAL FREE ACCESS

2011 Volume 6 Issue 3 Pages 803-814

Details
Abstract
Accelerated by the technological advances in the biomedical domain, the size of its literature has been growing very rapidly. As a consequence, it is not feasible for individual researchers to comprehend and synthesize all the information related to their interests. Therefore, it is conceivable to discover hidden knowledge, or hypotheses, by linking fragments of information independently described in the literature. In fact, such hypotheses have been reported in the literature mining community; some of which have even been corroborated by experiments. This paper mainly focuses on hypothesis ranking and investigates an approach to identifying reasonable ones based on semantic similarities between events which lead to respective hypotheses. Our assumption is that hypotheses generated from semantically similar events are more reasonable. We developed a prototype system called, Hypothesis Explorer, and conducted evaluative experiments through which the validity of our approach is demonstrated in comparison with those based on term frequencies, often adopted in the previous work.
Content from these authors
© 2011 Information Processing Society of Japan
Previous article Next article
feedback
Top