Journal of Information Processing
Online ISSN : 1882-6652
ISSN-L : 1882-6652
 
Subjective and Objective Thermal Comfort Estimation Using Wearable Sensors and Environmental Sensors
Haomin MaoShuhei TsuchidaYuma SuzukiRintaro KanadaTakayuki HoriTsutomu TeradaMasahiko Tsukamoto
Author information
JOURNAL FREE ACCESS

2023 Volume 31 Pages 308-320

Details
Abstract

An ideal self-adjusting environment requires adapting human thermal comfort automatically and continuously measuring the changes in human thermal comfort. According to the PMV (Predicted Mean Vote) model, human thermal comfort could be evaluated by human biometric data and environmental data. In this paper, we proposed a method to estimate human thermal comfort through a small number of wearable and environmental sensors based on machine learning. There are two typical definitions of thermal comfort: subjective thermal comfort representing the subjective perception of heat and objective thermal comfort calculated by the PMV formula. We used a subjective questionnaire and PMV formula to obtain the correct label for two kinds of thermal comfort, respectively. Among the three machine learning models, the random forest has 0.73 in MAE, which is suitable for estimating 7-level subjective thermal comfort, and the neural network has 0.47 in MAE, which is suitable for estimating objective thermal comfort. We investigated the estimation accuracy by changing the sensors' combinations. As a result, a small number of sensors could still roughly estimate human thermal comfort.

Content from these authors
© 2023 by the Information Processing Society of Japan
Previous article Next article
feedback
Top