Abstract
Stopping rules are developed for stochastic approximation which is an iterative method for solving an unknown equation based on its consecutive residuals corrupted by additive random noise. It is assumed that the equation is linear and the noise is independent and identically distributed random vectors with zero mean and a bounded covariance. Then, the number of iterations for achieving a given probabilistic accuracy of the resultant solution is derived, which gives a rigorous stopping rule for the stochastic approximation. This number is polynomial of the problem size.