Transactions of the Institute of Systems, Control and Information Engineers
Online ISSN : 2185-811X
Print ISSN : 1342-5668
Existing Conditions of Fractal Boundaries of Invariant Sets of a Class of One-Dimensional Nonlinear Discrete-Time Systems
Toshihiko YASUDAYoshifumi SUNAHARA
Author information
JOURNALS FREE ACCESS

1994 Volume 7 Issue 2 Pages 68-76

Details
Abstract

In this paper, fractal basin boundaries are investigated in connection with a class of one-dimensional nonlinear discrete-time systems.
Noting that the basin is an invariant set of the nonlinear function, describing the system dynamics, conditions, under which the Hausdorff dimension of boundaries of invariant sets is positive, are obtained and the existence of fractal basin boundaries is shown. Furthermore, it is demonstrated that if periodic points with period three exist, then fractal basin boundaries appear.
Secondly, the result obtained is applied to explore, the basin boundary of a class of one-dimensional nonlinear sampled-data control systems. Illustrative examples together with numerical experiments show the existence of fractal basin boundaries. These theoretical and numerical results reveal that in order to determine the sampling period, it is necessary to take into account the structure of the basin of the equilibrium.

Information related to the author
© The Institute of Systems, Control and Information Engineers
Previous article
feedback
Top